3.25.38 \(\int \frac {(1-2 x)^{5/2} (2+3 x)^2}{(3+5 x)^{3/2}} \, dx\) [2438]

3.25.38.1 Optimal result
3.25.38.2 Mathematica [A] (verified)
3.25.38.3 Rubi [A] (verified)
3.25.38.4 Maple [A] (verified)
3.25.38.5 Fricas [A] (verification not implemented)
3.25.38.6 Sympy [F]
3.25.38.7 Maxima [A] (verification not implemented)
3.25.38.8 Giac [A] (verification not implemented)
3.25.38.9 Mupad [F(-1)]

3.25.38.1 Optimal result

Integrand size = 26, antiderivative size = 138 \[ \int \frac {(1-2 x)^{5/2} (2+3 x)^2}{(3+5 x)^{3/2}} \, dx=-\frac {2 (1-2 x)^{7/2}}{275 \sqrt {3+5 x}}+\frac {21483 \sqrt {1-2 x} \sqrt {3+5 x}}{80000}+\frac {651 (1-2 x)^{3/2} \sqrt {3+5 x}}{8000}+\frac {651 (1-2 x)^{5/2} \sqrt {3+5 x}}{22000}-\frac {9}{200} (1-2 x)^{7/2} \sqrt {3+5 x}+\frac {236313 \arcsin \left (\sqrt {\frac {2}{11}} \sqrt {3+5 x}\right )}{80000 \sqrt {10}} \]

output
236313/800000*arcsin(1/11*22^(1/2)*(3+5*x)^(1/2))*10^(1/2)-2/275*(1-2*x)^( 
7/2)/(3+5*x)^(1/2)+651/8000*(1-2*x)^(3/2)*(3+5*x)^(1/2)+651/22000*(1-2*x)^ 
(5/2)*(3+5*x)^(1/2)-9/200*(1-2*x)^(7/2)*(3+5*x)^(1/2)+21483/80000*(1-2*x)^ 
(1/2)*(3+5*x)^(1/2)
 
3.25.38.2 Mathematica [A] (verified)

Time = 0.20 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.57 \[ \int \frac {(1-2 x)^{5/2} (2+3 x)^2}{(3+5 x)^{3/2}} \, dx=\frac {10 \sqrt {1-2 x} \left (79699+134625 x-112620 x^2-77600 x^3+144000 x^4\right )-236313 \sqrt {30+50 x} \arctan \left (\frac {\sqrt {\frac {5}{2}-5 x}}{\sqrt {3+5 x}}\right )}{800000 \sqrt {3+5 x}} \]

input
Integrate[((1 - 2*x)^(5/2)*(2 + 3*x)^2)/(3 + 5*x)^(3/2),x]
 
output
(10*Sqrt[1 - 2*x]*(79699 + 134625*x - 112620*x^2 - 77600*x^3 + 144000*x^4) 
 - 236313*Sqrt[30 + 50*x]*ArcTan[Sqrt[5/2 - 5*x]/Sqrt[3 + 5*x]])/(800000*S 
qrt[3 + 5*x])
 
3.25.38.3 Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.14, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {100, 27, 90, 60, 60, 60, 64, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(1-2 x)^{5/2} (3 x+2)^2}{(5 x+3)^{3/2}} \, dx\)

\(\Big \downarrow \) 100

\(\displaystyle \frac {2}{275} \int \frac {9 (1-2 x)^{5/2} (55 x+39)}{2 \sqrt {5 x+3}}dx-\frac {2 (1-2 x)^{7/2}}{275 \sqrt {5 x+3}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {9}{275} \int \frac {(1-2 x)^{5/2} (55 x+39)}{\sqrt {5 x+3}}dx-\frac {2 (1-2 x)^{7/2}}{275 \sqrt {5 x+3}}\)

\(\Big \downarrow \) 90

\(\displaystyle \frac {9}{275} \left (\frac {217}{16} \int \frac {(1-2 x)^{5/2}}{\sqrt {5 x+3}}dx-\frac {11}{8} (1-2 x)^{7/2} \sqrt {5 x+3}\right )-\frac {2 (1-2 x)^{7/2}}{275 \sqrt {5 x+3}}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {9}{275} \left (\frac {217}{16} \left (\frac {11}{6} \int \frac {(1-2 x)^{3/2}}{\sqrt {5 x+3}}dx+\frac {1}{15} \sqrt {5 x+3} (1-2 x)^{5/2}\right )-\frac {11}{8} (1-2 x)^{7/2} \sqrt {5 x+3}\right )-\frac {2 (1-2 x)^{7/2}}{275 \sqrt {5 x+3}}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {9}{275} \left (\frac {217}{16} \left (\frac {11}{6} \left (\frac {33}{20} \int \frac {\sqrt {1-2 x}}{\sqrt {5 x+3}}dx+\frac {1}{10} \sqrt {5 x+3} (1-2 x)^{3/2}\right )+\frac {1}{15} \sqrt {5 x+3} (1-2 x)^{5/2}\right )-\frac {11}{8} (1-2 x)^{7/2} \sqrt {5 x+3}\right )-\frac {2 (1-2 x)^{7/2}}{275 \sqrt {5 x+3}}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {9}{275} \left (\frac {217}{16} \left (\frac {11}{6} \left (\frac {33}{20} \left (\frac {11}{10} \int \frac {1}{\sqrt {1-2 x} \sqrt {5 x+3}}dx+\frac {1}{5} \sqrt {1-2 x} \sqrt {5 x+3}\right )+\frac {1}{10} \sqrt {5 x+3} (1-2 x)^{3/2}\right )+\frac {1}{15} \sqrt {5 x+3} (1-2 x)^{5/2}\right )-\frac {11}{8} (1-2 x)^{7/2} \sqrt {5 x+3}\right )-\frac {2 (1-2 x)^{7/2}}{275 \sqrt {5 x+3}}\)

\(\Big \downarrow \) 64

\(\displaystyle \frac {9}{275} \left (\frac {217}{16} \left (\frac {11}{6} \left (\frac {33}{20} \left (\frac {11}{25} \int \frac {1}{\sqrt {\frac {11}{5}-\frac {2}{5} (5 x+3)}}d\sqrt {5 x+3}+\frac {1}{5} \sqrt {1-2 x} \sqrt {5 x+3}\right )+\frac {1}{10} \sqrt {5 x+3} (1-2 x)^{3/2}\right )+\frac {1}{15} \sqrt {5 x+3} (1-2 x)^{5/2}\right )-\frac {11}{8} (1-2 x)^{7/2} \sqrt {5 x+3}\right )-\frac {2 (1-2 x)^{7/2}}{275 \sqrt {5 x+3}}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {9}{275} \left (\frac {217}{16} \left (\frac {11}{6} \left (\frac {33}{20} \left (\frac {11 \arcsin \left (\sqrt {\frac {2}{11}} \sqrt {5 x+3}\right )}{5 \sqrt {10}}+\frac {1}{5} \sqrt {1-2 x} \sqrt {5 x+3}\right )+\frac {1}{10} \sqrt {5 x+3} (1-2 x)^{3/2}\right )+\frac {1}{15} \sqrt {5 x+3} (1-2 x)^{5/2}\right )-\frac {11}{8} (1-2 x)^{7/2} \sqrt {5 x+3}\right )-\frac {2 (1-2 x)^{7/2}}{275 \sqrt {5 x+3}}\)

input
Int[((1 - 2*x)^(5/2)*(2 + 3*x)^2)/(3 + 5*x)^(3/2),x]
 
output
(-2*(1 - 2*x)^(7/2))/(275*Sqrt[3 + 5*x]) + (9*((-11*(1 - 2*x)^(7/2)*Sqrt[3 
 + 5*x])/8 + (217*(((1 - 2*x)^(5/2)*Sqrt[3 + 5*x])/15 + (11*(((1 - 2*x)^(3 
/2)*Sqrt[3 + 5*x])/10 + (33*((Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/5 + (11*ArcSin[ 
Sqrt[2/11]*Sqrt[3 + 5*x]])/(5*Sqrt[10])))/20))/6))/16))/275
 

3.25.38.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 64
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp 
[2/b   Subst[Int[1/Sqrt[c - a*(d/b) + d*(x^2/b)], x], x, Sqrt[a + b*x]], x] 
 /; FreeQ[{a, b, c, d}, x] && GtQ[c - a*(d/b), 0] && ( !GtQ[a - c*(b/d), 0] 
 || PosQ[b])
 

rule 90
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[b*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), 
 x] + Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(d*f*(n + p 
+ 2))   Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, 
p}, x] && NeQ[n + p + 2, 0]
 

rule 100
Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^( 
p_), x_] :> Simp[(b*c - a*d)^2*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d^2*(d 
*e - c*f)*(n + 1))), x] - Simp[1/(d^2*(d*e - c*f)*(n + 1))   Int[(c + d*x)^ 
(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*( 
p + 1)) - 2*a*b*d*(d*e*(n + 1) + c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ[n, -1] || (EqQ[n 
 + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] ||  !SumSimplerQ[p, 1])))
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 
3.25.38.4 Maple [A] (verified)

Time = 1.16 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.96

method result size
default \(\frac {\left (2880000 x^{4} \sqrt {-10 x^{2}-x +3}-1552000 x^{3} \sqrt {-10 x^{2}-x +3}+1181565 \sqrt {10}\, \arcsin \left (\frac {20 x}{11}+\frac {1}{11}\right ) x -2252400 x^{2} \sqrt {-10 x^{2}-x +3}+708939 \sqrt {10}\, \arcsin \left (\frac {20 x}{11}+\frac {1}{11}\right )+2692500 x \sqrt {-10 x^{2}-x +3}+1593980 \sqrt {-10 x^{2}-x +3}\right ) \sqrt {1-2 x}}{1600000 \sqrt {-10 x^{2}-x +3}\, \sqrt {3+5 x}}\) \(133\)

input
int((1-2*x)^(5/2)*(2+3*x)^2/(3+5*x)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/1600000*(2880000*x^4*(-10*x^2-x+3)^(1/2)-1552000*x^3*(-10*x^2-x+3)^(1/2) 
+1181565*10^(1/2)*arcsin(20/11*x+1/11)*x-2252400*x^2*(-10*x^2-x+3)^(1/2)+7 
08939*10^(1/2)*arcsin(20/11*x+1/11)+2692500*x*(-10*x^2-x+3)^(1/2)+1593980* 
(-10*x^2-x+3)^(1/2))*(1-2*x)^(1/2)/(-10*x^2-x+3)^(1/2)/(3+5*x)^(1/2)
 
3.25.38.5 Fricas [A] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.66 \[ \int \frac {(1-2 x)^{5/2} (2+3 x)^2}{(3+5 x)^{3/2}} \, dx=-\frac {236313 \, \sqrt {10} {\left (5 \, x + 3\right )} \arctan \left (\frac {\sqrt {10} {\left (20 \, x + 1\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{20 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) - 20 \, {\left (144000 \, x^{4} - 77600 \, x^{3} - 112620 \, x^{2} + 134625 \, x + 79699\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{1600000 \, {\left (5 \, x + 3\right )}} \]

input
integrate((1-2*x)^(5/2)*(2+3*x)^2/(3+5*x)^(3/2),x, algorithm="fricas")
 
output
-1/1600000*(236313*sqrt(10)*(5*x + 3)*arctan(1/20*sqrt(10)*(20*x + 1)*sqrt 
(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x - 3)) - 20*(144000*x^4 - 77600*x^3 - 
112620*x^2 + 134625*x + 79699)*sqrt(5*x + 3)*sqrt(-2*x + 1))/(5*x + 3)
 
3.25.38.6 Sympy [F]

\[ \int \frac {(1-2 x)^{5/2} (2+3 x)^2}{(3+5 x)^{3/2}} \, dx=\int \frac {\left (1 - 2 x\right )^{\frac {5}{2}} \left (3 x + 2\right )^{2}}{\left (5 x + 3\right )^{\frac {3}{2}}}\, dx \]

input
integrate((1-2*x)**(5/2)*(2+3*x)**2/(3+5*x)**(3/2),x)
 
output
Integral((1 - 2*x)**(5/2)*(3*x + 2)**2/(5*x + 3)**(3/2), x)
 
3.25.38.7 Maxima [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.79 \[ \int \frac {(1-2 x)^{5/2} (2+3 x)^2}{(3+5 x)^{3/2}} \, dx=-\frac {18 \, x^{5}}{5 \, \sqrt {-10 \, x^{2} - x + 3}} + \frac {187 \, x^{4}}{50 \, \sqrt {-10 \, x^{2} - x + 3}} + \frac {3691 \, x^{3}}{2000 \, \sqrt {-10 \, x^{2} - x + 3}} - \frac {38187 \, x^{2}}{8000 \, \sqrt {-10 \, x^{2} - x + 3}} - \frac {236313}{1600000} \, \sqrt {10} \arcsin \left (-\frac {20}{11} \, x - \frac {1}{11}\right ) - \frac {24773 \, x}{80000 \, \sqrt {-10 \, x^{2} - x + 3}} + \frac {79699}{80000 \, \sqrt {-10 \, x^{2} - x + 3}} \]

input
integrate((1-2*x)^(5/2)*(2+3*x)^2/(3+5*x)^(3/2),x, algorithm="maxima")
 
output
-18/5*x^5/sqrt(-10*x^2 - x + 3) + 187/50*x^4/sqrt(-10*x^2 - x + 3) + 3691/ 
2000*x^3/sqrt(-10*x^2 - x + 3) - 38187/8000*x^2/sqrt(-10*x^2 - x + 3) - 23 
6313/1600000*sqrt(10)*arcsin(-20/11*x - 1/11) - 24773/80000*x/sqrt(-10*x^2 
 - x + 3) + 79699/80000/sqrt(-10*x^2 - x + 3)
 
3.25.38.8 Giac [A] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.99 \[ \int \frac {(1-2 x)^{5/2} (2+3 x)^2}{(3+5 x)^{3/2}} \, dx=\frac {1}{2000000} \, {\left (4 \, {\left (8 \, {\left (36 \, \sqrt {5} {\left (5 \, x + 3\right )} - 529 \, \sqrt {5}\right )} {\left (5 \, x + 3\right )} + 16905 \, \sqrt {5}\right )} {\left (5 \, x + 3\right )} + 61545 \, \sqrt {5}\right )} \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5} + \frac {236313}{800000} \, \sqrt {10} \arcsin \left (\frac {1}{11} \, \sqrt {22} \sqrt {5 \, x + 3}\right ) - \frac {121 \, \sqrt {10} {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}{31250 \, \sqrt {5 \, x + 3}} + \frac {242 \, \sqrt {10} \sqrt {5 \, x + 3}}{15625 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}} \]

input
integrate((1-2*x)^(5/2)*(2+3*x)^2/(3+5*x)^(3/2),x, algorithm="giac")
 
output
1/2000000*(4*(8*(36*sqrt(5)*(5*x + 3) - 529*sqrt(5))*(5*x + 3) + 16905*sqr 
t(5))*(5*x + 3) + 61545*sqrt(5))*sqrt(5*x + 3)*sqrt(-10*x + 5) + 236313/80 
0000*sqrt(10)*arcsin(1/11*sqrt(22)*sqrt(5*x + 3)) - 121/31250*sqrt(10)*(sq 
rt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) + 242/15625*sqrt(10)*sqrt( 
5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22))
 
3.25.38.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(1-2 x)^{5/2} (2+3 x)^2}{(3+5 x)^{3/2}} \, dx=\int \frac {{\left (1-2\,x\right )}^{5/2}\,{\left (3\,x+2\right )}^2}{{\left (5\,x+3\right )}^{3/2}} \,d x \]

input
int(((1 - 2*x)^(5/2)*(3*x + 2)^2)/(5*x + 3)^(3/2),x)
 
output
int(((1 - 2*x)^(5/2)*(3*x + 2)^2)/(5*x + 3)^(3/2), x)